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Hydrometeorological hazards, particularly tropical cyclones, pose a recurring threat to
lives, livelihoods, and economic stability in vulnerable regions worldwide. Despite
advancements in meteorological forecasting, the persistent gap between hazard
prediction and actionable risk communication continues to undermine disaster
preparedness and response. In Bangladesh, a country disproportionately affected by
cyclones originating in the Bay of Bengal, early warning systems have historically reduced
fatalities through timely alerts and infrastructure improvements. However, generic
forecasts often fail to address the nuanced vulnerabilities of individual communities,
resulting in varied impacts across the region with different livelihood sectoral damage.

The critical challenge lies not in predicting what the weather will be but in communicating
what the weather will do. While vital, traditional hazard-centric forecasts lack granularity in
translating meteorological data into localized consequences. This limitation leaves
disaster managers and communities unprepared to prioritize resources or implement
targeted interventions, particularly in regions with heterogeneous exposure and
vulnerability profiles.

To address this gap, the Cyclone Impact Forecasting (IF) Toolkit demonstrates the
paradigm shift toward impact-based decision-making. By integrating high-resolution
hazard forecasts with dynamic vulnerability indices and sector-specific exposure data,
this methodology enables the generation of location-specific impact scenarios. Grounded
in multidisciplinary collaboration, the toolkit synthesizes advanced forecast products,
socio-economic datasets, and remote sensing insights to quantify risks at both national
(district) and sub-district (upazila) levels. For instance, during Cyclone Remal (2024), the
integration of vegetation health indices allowed precise forecasting of agricultural losses,
guiding preemptive harvests and asset protection in high-risk areas.

Developed in partnership with the Bangladesh Meteorological Department (BMD) and the
Department of Disaster Management (DDM), this toolkit emphasizes operational
scalability of IbF and IF specially for compound hazards like tropical cyclones. It leverages
Bangladesh’s existing early warning infrastructure while incorporating national and
sub-national-level socioeconomic and exposure data to generate detailed impact
scenarios. This impact scenario can subsequently serve as the baseline for effective early
and anticipatory actions, such as targeted evacuations, resource prepositioning, and
sector-specific resilience measures. The result is a robust framework that bridges the
divide between meteorological accuracy and communitycentric risk reduction.

By transitioning from traditional forecasts to a impact-driven approach, this initiative
represents a significant advancement in disaster risk management. It not only enhances
the precision of early warnings but also fosters a culture of proactive preparedness,
ultimately reducing economic losses and safeguarding vulnerable populations. As climate
change intensifies cyclone frequency and severity, the adoption of such innovative tools
will be pivotal in building adaptive resilience across coastal regions globally.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting



ackground

Bangladesh's coastal regions face disproportionate exposure to tropical cyclones,
enduring approximately 25% of all cyclones generated annually in the Bay of Bengal
(Alam et al., 2003; Dube et al., 2009). These events have historically inflicted catastrophic
human and economic losses, a trend projected to intensify with rising sea surface
temperatures and sea levels (Dasgupta et al, 2010). The country’s existing risk
management framework—comprising cyclone shelters, embankments, volunteer-led
preparedness programs, and mass media alerts—has reduced fatalities over decades.
However, systemic gaps persist in translating forecasts into actionable, location-specific
guidance, particularly for communities with diverse vulnerability profiles.

The national cyclone warning system, originally designed for maritime ports, exemplifies this
limitation. For instance, a standardized “Great Danger Signal No. 10" issued for the port of
Mongla triggers blanket evacuations across entire districts, irrespective of localized hazard
intensity or community resilience. While critical for port operations, such one-size-fits-all
alerts inadequately address the spatially variable risks faced by inland and coastal
populations. A cyclone forecasted to generate 150 km/h winds in a densely populated
deltaic region may warrant different preparedness measures than the same storm impacting
a sparsely inhabited coastal belt. Yet, under the current system, both scenarios receive
identical warnings, leading to either resource misallocation or public complacency.

The effectiveness of modern forecasting systems relies on synthesizing high-resolution
hazard forecasts with granular socio-economic and exposure datasets to contextualize
risks. Precision of forecasting Hazard is achieved through advanced meteorological tools
such as the European Centre for Medium-Range Weather Forecasts (ECMWF)'s
high-resolution forecast products, which generate high-resolution predictions for wind and
rainfall, enabling dynamic risk mapping. These hazard forecasts can be further
complemented by vulnerability and exposure information collected through primary,
secondary, and even satellite products to generate more meaningful impact scenario.
Together, these technical advancements transform static meteorological data into
actionable insights, ensuring forecasts addresses not only weather conditions but also how
it will impact vulnerable populations and critical sectors. These technical innovations
underpin Impact-based Forecasting (IbF) and Impact Forecasting (IF), methodologies that
shift the focus from predicting weather conditions to understanding what the weather will do.

The success of such approaches relies on the four pillars of the Early Warning System (EWS):
risk knowledge, monitoring, warning communication, and response capability. A
“people-centered” EWS requires seamless collaboration between meteorological agencies,
disaster management authorities, and local governments to convert static forecasts into
dynamic action plans. This approach can subsequently aid in customizing evacuation
protocols in accordance with community mobility constraints or pre-positioning supplies based
on projected agricultural losses. While challenges persist, particularly in realtime data
integration and hyper-local validation, the adoption of IF represents a transformative leap in
reducing potential damages through early actions. By bridging the gap between global-scale
models and community-scale vulnerabilities, this toolkit is pioneering a replicable framework
for cyclone resilience, one that aligns meteorological precision with humanitarian imperatives.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting 2
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Chapter 1: Introduction to Key Terminologies

1.1 Hazard

A hazard is defined as the possible occurrence of
a natural or human-induced physical event or
trend that could result in loss of life, injury, or
other health impacts, along with damage to or
loss of property, infrastructure, livelihoods,
service provision, ecosystems, and environmental
resources (IPCC, 2022). Similarly, WMO (2015)
defines hazard as any element related to
hydrometeorological, geophysical, or
human-induced that presents a risk to life,
property, or the environment (WMO, 2015).
Hazards do not constitute disasters but become
so when interacting with vulnerable populations
and exposed assets. Hence, it is essential to
consider a hazard's frequency, magnitude,
duration, and spatial extent to identify potential
impact areas. For instance, data on weather
predictions, meteorological conditions, and
specific hazard information related to cyclones
are useful when illustrating a hazard layer.

1.2 Exposure

Exposure encompasses scenarios in which
individuals, livelihoods, species or ecosystems,
environmental functions, services, and resources,
along with infrastructure and economic, social, or
cultural assets, are situated in regions
susceptible to adverse effects (IPCC, 2022). In the
event of a hazard, the people, assets, or elements
that may be affected are defined under exposure.
The exposed elements must be located in
hazard-prone areas as otherwise, no such risk of
disaster exists (WMO, 2015). For instance, Human
beings and tangible human assets (buildings and
critical infrastructures) are some indicators that
belong to this category.

Exposure and vulnerability are not always
mutually inclusive; for instance, inhabitants living
inside Pucca housing are less exposed than those
in Kutcha houses despite a similar level of
vulnerability due to location. Exposure is also

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting



time and space-dependent: the geographic location
of the exposed element can determine its level of
exposure. To highlight a situational scenario, during
a thunderstorm, a private car on the road would be
less exposed than a crane despite the same hazard
(WMO, 2015; IPCC, 2014). The dynamic nature of
exposure makes it difficult to gather such statistics
(WMO, 2021). Information that can impact economic
well-being, such as fisheries, aquaculture, and
agriculture production data, can also fall under
exposure data. As such, exposure data can range
from population density to road density to
agricultural area (WMO, 2021; INFORM, 2022).

1.3 Vulnerability

Vulnerability refers to a community's inability to cope
with a hazard effectively. The exposed elements
(human beings, livelihoods, and assets) are
susceptible to adverse effects from that hazard (IPCC,
2022; WMO, 2015). The vulnerability of the exposed
element varies based on time and space. For example,
it is possible to lower the vulnerability of the coastal
population in a cyclone-prone area by increasing the
capacity for cyclone shelters. Following the cyclone
Gorky in 1991, the number of multi-purpose cyclone
shelters increased in the coastal areas of Bangladesh,
which reduced the vulnerability of many inhabitants
(WMO, 2021; Haldi et al., 2021).

Vulnerability is directly proportional to lack of coping
capacity and inversely to adaptive capacity. It can be
further divided into sensitivity and adaptive capacity
(IPCC, 2014). The level of sensitivity indicates the
extent to which a system or population is impacted by
a hazard, with more sensitive communities
experiencing more significant harm. Adaptive capacity
refers to the capacity to deal with, adapt to, and
bounce back from the effects of hazards. For example,
Populations with low adaptive capacity and high
sensitivity are more vulnerable. In contrast, those with
greater adaptive capacity are better prepared to
handle and recover from disasters, thereby reducing
overall vulnerability. Factors like socio-economic
conditions, location, infrastructure, health
demographics, and institutional capacity also
influence the vulnerability indices. Hence, vulnerability
indicators can be integrated with forecast information
to help identify potential hotspots for sector-specific
interventions.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting 6
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Fig. 1. Relationship between the key elements of an Impact Forecast Model

1.4 Impact

In general, Impact refers to the likelihood and severity
of damage to individuals, their livelihoods, and
property, resulting from their exposure and
vulnerability in the event of a hazard (WMO, 2015).
Impact can incorporate both adverse effects (such as
economic losses) or positive effects (such as financial
benefits). The effects can be economic, human, and
environmental, which vary according to the scale of
the disaster. The magnitude of impact may be lowered
by improving response actions. Hence, understanding
the effects and subsequent impacts is essential for
customizing risk communication, navigating early
interventions, and directing anticipatory action toward
the most vulnerable populations. Since hazard
forecasts differ from one area to another, the resulting
impacts also vary from upazila to upazila. By
predicting the area most likely to be highly impacted
(for instance, through IF), relevant authorities can
initiate early actions effectively to minimize harm and
enhance preparedness. The mathematical Impact
calculation in this Toolkit has been derived from
INFORM (2022) and WMO (2015). Here, Impact is
determined by multiplying the forecasted hazard with
vulnerability and exposure. The relationship between
all the variables are summarized in Figure 1.
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1.5 Anticipatory Action

Anticipatory action involves measures taken to reduce
the humanitarian impacts of a forecast hazard before
it occurs, or before its most acute impacts are felt.
The decision to act is based on a forecast, or
collective risk analysis, of when, where and how the
event will unfold (IFRC 2020). In general, it typically
involves taking steps prior to the occurrence of a
hazard to mitigate or lessen severe humanitarian
effects. Successful execution of anticipatory action
globally often involves considering pre-established
triggers, taking pre-identified actions, and distributing
pre-arranged funding (WMO, 2021). The consideration
of pre-established triggers includes considering
thresholds and decision-making criteria based on
reliable forecasts. This approach enables the
implementation of predetermined actions that
effectively assist the most vulnerable communities
during the trigger event and at the crisis's onset.
Lastly, pre-arranged funds are allocated and disbursed
based on the pre-established trigger linked to the
pre-identified actions. Hence, the reliability of forecast
plays a crucial role in mobilizing the resources during
the time of crisis. Anticipatory actions are
resource-intensive; therefore, the resources must be
mobilized efficiently. As opposed to the conventional
port-based forecasting, it is imperative to consider
location-specific impact to facilitate sustainable and
effective anticipatory actions.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting 8
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Before delving into the specifics of location-specific Impact
Forecasting, it is essential to establish a foundational understanding of
the distinct approaches used in different meteorological forecasting.
The forecasting approaches are described for better understanding.

2.1 Paradigm 1 - Traditional
Forecasting

The first paradigm, also known as
‘Traditional Forecasting,’ mainly
refers to information on
meteorological characteristics such
as the hazard's intensity, duration,
and spatial extent. The traditional
forecast information consists of
atmospheric observations and
expected conditions throughout the
forecast period. These forecasts
indicate the anticipated changes in
observable atmospheric factors like
wind, temperature, humidity, and
precipitation. Forecasts can be
presented in a deterministic or a
probabilistic format. Importantly,
traditional forecasts usually consider
only the weather hazard and not its
potential effects on society.
Importantly, traditional forecasts
usually consider only the weather
hazard and not its potential impact
on society and livelihood.
pre-arranged funds are allocated and
disbursed based on the
pre-established trigger linked to the
pre-identified actions. Hence, the
reliability of forecast plays a crucial
role in mobilizing the resources
during the time of crisis. Anticipatory
actions are resource-intensive,;
therefore, the resources must be
mobilized efficiently. As opposed to
the conventional port-based
forecasting, it is imperative to
consider location-specific impact to
facilitate sustainable and effective
anticipatory actions.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting 12
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Example 1: Severe
monsoon rainfall
expected tomorrow,
with anticipated
wind gusts
reaching 80 km/h

)

Such forecasts describe what the
weather will be. They sometimes
include generalized statements
about possible consequences or
advice (e.g., “heavy rain may cause
localized flooding; carry an
umbrella”), but they remain largely
hazard-centric. Traditional
forecasting has undoubtedly been
valuable and has saved lives by
alerting communities to hazardous
weather. However, it is
understandable that providing
hazard information alone,
especially if it is generic, often
does not give people or
institutions enough guidance to
reduce the social or economic
consequences of that hazard.

One major limitation is that
generic warnings can impair early
actions. Suppose a forecast is too
broad (“a cyclone warning for an
entire coastal region”) and does
not clarify which areas will be
most impacted or what the
impacts might be. In that case,
local disaster managers, officials,

d?

Example 2: Expect
heat indices to rise
above 40 degrees
Celsius during
peak afternoon
hours tomorrow

7

and the public may not know how
to act regarding it. They might
delay preparations or under- or
over-react, because they lack
clarity on the expected impact in
their specific area. For instance, if
a disaster manager only knows a
cyclone is coming but not that it
will likely inundate certain
villages, it will be hard to decide
how many people to evacuate or
which resources to mobilize. In
short, traditional hazard-focused
forecasts are necessary, but not
sufficient - they set the stage for a
needed paradigm shift toward
forecasts that convey impacts, not
just hazards.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting



2.2 Paradigm 2 - Impact-based Forecasting

Impact-based forecasting (IbF) represents an evolution of traditional
forecasting. Under IbF, the forecast information goes beyond the
hazard itself to include who and what might be affected and how. This
approach integrates vulnerability information into the forecast,
effectively translating weather data into expected consequences. In
practice, IbF is often implemented by taking a specific hazard forecast
and describing the potential impacts via warning messages. For
example, weather warnings may mention expected effects on people,
infrastructure, and services (often directed at both the public and
disaster management agencies).

Example 1: Severe monsoon rainfall
expected tomorrow, which may cause

urban flooding and delays in
transportation services

Example 2: Expect heat indices to rise
above 40 degrees Celsius during peak
afternoon hours tomorrow. This may
lead to increased risk of heatstroke and
dehydration amongst the elderly and
outdoor workers

These warnings include the hazard forecast and its potential impact
(flooding, health risks), thereby telling us what the weather will do, not just
what it will be (Campbell et al., 2018). IbF usually relies on predefined rules
or models that link certain hazard thresholds to likely impacts, based on
historical experience or vulnerability data. For instance, forecasters might
know that in City X, when rainfall exceeds 100 mm within 24 hours, specific
neighborhoods are prone to flooding. As a result, a warning indicating that
flooding is a probable impact would be issued. A key point in IbF is that
impact thresholds are not one-size-fits-all. The level of rainfall that causes

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting 14



floods in one city might not in another if, say, drainage conditions or
terrain differ. Therefore, IbF requires understanding local vulnerability and
exposure. The “threshold” for dangerous wind or rain can vary by location
and over time, depending on how prepared or fragile a community is.

IbF typically does not fix a single trigger across the board; it aims to factor
in the variability of vulnerability. For example, a resilient community
exposed to 80 km/h winds might experience minor inconvenience in one
place but devastating in another due to weaker infrastructures. By includ-
ing potential impact warnings, IbF directly addresses the “so what?” ques-
tion that a traditional forecast leaves to the user’s imagination. However,
IbF in many countries is still an emerging practice and may sometimes rely
on generalized impact statements. While, it represents a step in the right
direction, but often the impact rules (e.g., “rain > X causes Y impact”) are
static or based on expert judgment and might not account for all local
nuances. Still, the move to impact-based messages has been shown to
improve public responses to warnings, because people can better grasp
what actions to take when they understand the likely outcomes.

2.3 Paradigm 3 - Impact Forecasting

Impact Forecasting (IF) builds upon IbF by formally and quantitatively
integrating hazard, exposure, and vulnerability data to generate a direct
forecast of impacts. In this paradigm, one does not just append impact
statements to a hazard forecast; instead, one uses models or algorithms
that take in hazard predictions (like wind speed, rainfall, and storm surge)
along with datasets on exposure and vulnerability, and output metrics or
maps of expected impact with advisories. Essentially, IF broadens the fore-
casting process from asking “What will the weather be?” to “What will the
weather do?” (WMO, 2015).

In practice, implementing IF requires detailed, localized data and close
collaboration between meteorologists, disaster risk experts, and sector
specialists. By incorporating local data (for example, exactly which villages
are low-lying, where the elderly or disabled populations are concentrated,
what the housing conditions are), IF can produce forecasts such as:

15 Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting



Example 1:

Expect severe monsoon rainfall in
Sharankhola upazila tomorrow,
likely causing urban flooding and
transport delays in the south side.
Residents should prepare for road
closures and seek alternative
routes.

Example 2:

Expect heat indices to rise above
40 degrees Celsius in Rajarkul
union during peak afternoon hours
tomorrow at Ramu Upazila. This
may lead to increased risk of
heatstroke and dehydration
amongst the elderly and outdoor
farmers located in that region.

\o

These examples illustrate how IF gives specific, actionable information:
exactly where and who will be affected and in what way. To achieve this,
the approach behind IF must consider the local context. For instance, the
forecast of heavy rain is combined with data on drainage or flood defenses
in Sharankhola to predict flooding and travel disruption. The heatwave
forecast is combined with demographic data about Rajarkul (perhaps
knowing it has many senior citizens and laborers) to predict health impacts.

Because IF involves many data layers, it is more complex than traditional
forecasting. It demands enhanced data sharing and coordination among
agencies (meteorological agencies, local governments, disaster
management offices, etc.). It may also involve more advanced statistical or
machine-learning models to relate hazard inputs to impact outputs. The
complexity is worthwhile because IF provides the most detailed and
localized guidance for early action.
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Paradigms 2 and 3 are excellent tools for stakeholders and decision-makers.
By providing more relatable information, they help local authorities and
communities respond more efficiently. Knowing the impacts of a weather
event in advance enables immediate, appropriate actions to safeguard
lives, livelihoods, and property. With climate change and other factors
increasing the frequency of extreme weather (and the potential for
multiple hazards occurring together), the need for localized impact
information is greater than ever.

Figure 2 conceptually illustrates this progression (“Route to Impact forecasting”),
highlighting how adding layers of vulnerability and exposure information to
forecasts makes the warnings more actionable. Impact Forecasting, in particular,
is a key enabler of anticipatory action because it directly links forecasts to
expected outcomes, allowing for early, tailored interventions.

Traditional Impact-based Impact Forecast
weather Forecast Forecast (Hazard (Hazard +
(Hazard only) + Vulnerability) Vulnerability +
Exposure)

Forecasted heavy rain in Rainfall accumulation of =) Expect increased Traffic
o]

Dhaka to exceed 100mm 100-140mm expected around congestion and an hour delay

over the next 24 hours midnight in Dhaka South in journey time over the next
24 hours
4. Resulting in possible urban
'——5 flooding Due to urban flooding in

Dhaka South caused by heavy
rain of 100-140mm.

This may result in
waterlogging in residential
areas near Dhanmondi road 27

O M

Fig. 2. Route to Impact Forecasting
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2.4 Importance of Impact Forecasting in Anticipatory Action

Bangladesh's existing cyclone forecasting system is predominantly
port-based, providing limited location-specific information. By
integrating higher-resolution, upazila-level (sub-district) forecasts, it
becomes possible to address this shortfall and capture variations in
wind speed, rainfall, and storm surges across different regions. Beyond
the hazard itself, localized factors such as socio-economic
vulnerabilities, exposure information such as infrastructure type or
population density also shape the degree of impact at the district or
upazila level.

Impact Forecasting Collaboration

Effective
Partnerships
Ensure holistic response
and communication

Core agencies for
meteorological
services

NGOs
Support government to
coordinate with

Government
Agencies
Coordinate among all

national stakeholder local government

and community

Under the traditional system, large geographic areas often receive uniform forecasts,
leading to a one-size-fits-all response that may neither match local needs nor be
resource-efficient. This generic approach can erode public trust over time, as communities
with markedly different risks and vulnerabilities are instructed to take similar precautions.
Moreover, mobilizing extensive resources across vast areas is financially and logistically
burdensome. In contrast, by integrating location-specific hazard forecasts with socio-eco-
nomic and exposure data, decision-makers can generate robust impact scenarios that
inform more precise, cost-effective AA.

To achieve this level of accuracy, strong collaboration among stakeholders—including
government agencies, NGOs, and local communities—is vital. For instance, National Mete-
orological and Hydrological Services (NMHSs) alone may not have the breadth of
socio-economic and sector-specific data needed for comprehensive impact forecasting.
Effective partnerships can facilitate data sharing, technical support, and expertise, ensuring
a more holistic response. Each step involved in Impact Forecasting is dynamic and requires
extensive collaboration and data integration beyond standard hazard warnings.
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Chapter 3: Data and Methods

3.1 Method Overview

Given the increasing frequency and severity of cyclonic events, it is
urgent to address the impacts caused by a cyclone’s compound effects
(destructive winds, heavy rainfall, and storm surges) on vulnerable
coastal regions. In response to this need, RIMES has been developing a
standardized Impact Forecasting toolkit for cyclones. The methodology
presented in this toolkit builds upon RIMES'’s previous work on cyclone
impact-based forecasting, incorporating improvements and more
localized impact scenarios.

The aim of the toolkit is to utilize the most accurate available forecast
products and available risk information to create impact scenarios at
the district and sub-national (Upazila) level that can assist
decision-makers in making informed choices about early actions (for
example, deciding on evacuations or pre-positioning emergency
resources). While the initial focus was on district-level impacts, the
methodology has also been tested and demonstrated at the
sub-national (Upazila) levels to showcase location-specific impacts. In
doing so, it leverages vulnerability and other socio-economic data
collected from local government sources, rather than relying solely on
broader national indices.

Previously, RIMES’s impact forecasting efforts utilized the INFORM Risk
Index for baseline vulnerability and risk data. In this toolkit, however, a
complementary approach has been introduced: incorporating new local,
granular data to build on and enhance the previous methodology. In
other words, instead of depending on INFORM’s broader metrics alone,
RIMES has incorporated actual different local socio-economic local
from the demonstrated areas (through the STEP project, details are
described later) and integrated it into the impact model. This allows
the framework to reflect community-level realities more accurately.
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Index for Risk Management (INFORM) e Bangladesh

The INFORM Risk Index is a global, open-source tool developed
by the Joint Research Centre of the European Commission to
assess disaster and crisis risks. It supports proactive disaster
management and humanitarian planning. Bangladesh is highly
vulnerable to hazards like cyclones, floods, storm surges, and
droughts. The country uses INFORM'’s risk analysis to guide
disaster risk reduction (DRR), anticipatory action, and
resilience-building strategies. It aids policymakers, humanitarian
organizations, and development planners in prioritizing
interventions, allocating resources efficiently, and integrating
disaster risk considerations into national and local policies. In
addition to the national index, the INFORM Subnational Risk Index
provides more localized risk assessments at the Upazila level,
helping identify the more granular disparities in exposure,
vulnerability, and coping capacity across upazilas, ensuring
targeted and context-specific interventions. By leveraging
INFORM risk insights, different stakeholders and organizations
are using them to support the enhancement of disaster
preparedness, minimize losses, and strengthen the resilience of
vulnerable communities.

Thus, the Cyclone Impact Forecasting toolkit demonstrates a
methodology that combines existing data (e.g., global/regional models
and indices) with new location-specific data to generate impact
scenarios for upazilas in coastal Bangladesh. It uses three
fundamental data pillars — vulnerability, exposure, and hazard forecast
(aligned with WMO 2015 and INFORM 2022 guidelines) — as the
building blocks of the impact model. Local socio-economic data on
vulnerability and lack of coping capacity were gathered via the STEP
project and are interpreted in a case study within this toolkit. The
following sections provide a step-by-step explanation of how to
generate localized impact scenarios using these data and methods.
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3.2 Case Study Area

The coastal regions of Bangladesh
cover an area of 47,201 km?2 and are
home to 35 million people, divided
into the Eastern, Central, and
Western zones (Hoque et al., 2021).
For demonstration purposes, the
districts of Bagerhat, Satkhira,
Barguna, and Patuakhali have been
selected as they fall within the
working area of the STEP project.
These districts are part of the
Ganges tidal deltaic plain within the
western coastal region of
Bangladesh (22°-23° N latitude and
89°-90° E longitude). The residents
of the western coast are highly

vulnerable to natural disasters due to
their topography, socio-economic
conditions and elevated poverty
levels (Akter et al., 2019). The region
experiences a humid climate with an
annual rainfall of 1,940 mm. It is
regularly impacted by severe tropical
cyclones (i.e., Cyclone Remal (2024)
and Cyclone Dana (2024)), which
resulted in fatalities and notable
damage to human property and the
surroundings. The following figure
demonstrates 4 of the 19 coastal
districts and the selected upazilas
and unions based on the project
provision (Figure 3).

22 Taltall

Fig. 3. The map depicts the geographical distribution of the selected study areas
across Satkhira, Bagerhat, Barguna, and Patuakhali Districts in Bangladesh. The
numbers represent the selected upazilas of the selected districts.
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3.3 Data Synthesis

For creating a localized impact scenario, the study needed to collect
data at granular level. Fine-resolution local data enables building a
detailed vulnerability profile and improves the precision of the impact

forecasts. This granular local data collection was conducted from local

secondary sources with the help of STEP project members across the
selected locations. Various local government offices and resources
were consulted to gather the necessary information. Key data sources
of these various secondary data included:

Local administrative offices: Union Parishad
(council) offices, Upazila offices (such as
Statistics, Agriculture, Fisheries, Livestock,
Health, Project Implementation, ICT, Social
Services), and the District Water Development
Board. These offices provided data on local
demographics, livelihoods, infrastructure, health
facilities, and other local parameters relevant to
vulnerability and coping capacity which is
generally not available at national scale or not
regularly updated on national database.

National surveys and census data: The
Bangladesh Household Income and Expenditure
Survey (HIES) 2016, and the Population and
Housing Censuses (2011 Community Report for
Bagerhat, and 2022 National Report). These
provided standardized statistics on population,
housing, and economic indicators at local levels
where available.

Using these sources, a rich robust dataset of vulnerability indicators
(e.g., poverty rates, number of households by structure type, literacy
rates, access to services) and exposure indicators (e.g., population

counts, infrastructure in hazard-prone areas) has been compiled for
each upazila and even down to union level where possible.

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting
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This data collection effort was intensive but crucial: the quality and
resolution of the input data directly affect the accuracy of the impact
forecasting outputs. By combining institutional data and survey results,
we ensured that the toolkit’'s analysis reflects on-the-ground realities in
the project areas, rather than relying solely on broader indexes or
assumptions. All collected data went through a cleaning and validation
process (removing inconsistencies, filling gaps where feasible) to be
ready for use in the modeling steps described in the next chapter.
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Chapter 4: Cyclone Impact Forecasting:

A Step-by-Step Guide

29

This chapter outlines the step-by-step methodology used in the
toolkit to forecast cyclone impacts. The process involves assessing
vulnerability, using the hazard forecast, evaluating exposure, and

finally computing the impact.

4.1 Addressing Vulnerability

As a first step, it was essential
to identify the variables that
make communities vulnerable
during a cyclonic event. The
framework for this cyclone
impact toolkit was adapted from
multiple peer-reviewed sources
and best-practice frameworks.
For instance, it drew certain
elements from the INFORM
subnational risk index for
Bangladesh and from other
frameworks associated with IbF
and IF, and combined them to
create a new method tailored to
cyclone-specific vulnerability
assessment

In this toolkit, a range of
vulnerability indicators that
significantly affect a
community’s capacity to cope
during a cyclone (the full list is
provided in Annex Table 1) were
included. These indicators span
various dimensions of
vulnerability — such as poverty
levels, housing strength,
livelihood dependency on
climate-sensitive sectors,
population demographics

(children, elderly, disabled),
infrastructure availability (like
shelters, clean water,
healthcare), and so on. The
dataset also included indicators
of “lack of coping capacity,”
which often overlap with
vulnerability (for example, low
literacy or lack of access to
communication can hinder
effective response).

Once collected, the data for all
vulnerability indicators were
normalized to a common scale
and then assigned weights
through expert consultations.
Normalization (detailed in the
Annex under “Data
Normalization”) converts
indicators measured in different
units (percentages, counts,
indices) into unitless scores,
typically ranging from 0 to 1 or 0
to 5, so that they can be
compared and combined. Weight
assignment was done via a
multi-criteria analysis with input
from experts, attributing a
relative importance to each
indicator. In this method,
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weights ranged from 1 (least
important or least vulnerable if
that indicator is favorable) to 5
(most important or most
vulnerable). For example, “poor
households” might receive a
high weightage if poverty is
considered a critical factor in
vulnerability, whereas “literacy
rate” might receive a moderate
weightage. The weights reflect
the expert judgment (and
assumptions) about which
factors would most worsen
cyclone impacts in the local
context.

After normalization and
assigning weightage, the next
involved computating a
composite vulnerability score
for each area. This was done by
multiplying each indicator’s
normalized value by its weight
and summing these products
(the formula and steps are
provided in Annex “Computing
Vulnerability Score”). The result
is a single numerical
vulnerability score for each
upazila/union. Afterwards, the
scores were categorized into a
Vulnerability Index with
qualitative levels (for ease of
interpretation). Specifically, the
range of scores were divided
into categories of Very Low,
Low, Moderate, High, and Very
High vulnerability. Using GIS
software (ArcGIS Pro), the
vulnerability maps were
generated by coloring each area
according to its category. These
maps visually highlight which

Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting

locations are relatively more
vulnerable to cyclone impacts
(The steps involved in the
process are summarized in
Figure 4).

The vulnerability assessment -
comprising the calculation of
scores and the mapping -
serves as the initial step in
understanding where impacts
could be worst. Highly
vulnerable areas, especially if
also highly exposed to the
hazard, are likely to suffer
greater impacts. This
information is crucial on its own
(for example, disaster managers
might decide to strengthen
preparedness in areas shown as
highly vulnerable). Moreover,
this vulnerability layer is a key
input for later steps, where it
will be combined with hazard
and exposure data to compute
impact forecasts.
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Fig. 4. Methodology of Vulnerability Assessment

4.2 Forecasted Hazard

This method’s second component is the hazard forecast, i.e. the
predicted intensity of the cyclone. In the context of cyclones, the
hazard has multiple facets — primarily wind, rainfall, and storm surge.
The forecasted hazard values refer to the expected magnitudes of
these elements during the event, and they can vary significantly by
location (for example, the south-east quadrant of a cyclone might bring
heavier rain to one district while another district gets stronger winds).
For this toolkit, forecast products from major modeling sources: the
European Centre for Medium-Range Weather Forecasts (ECMWF) for
wind and rain predictions, the Indian National Centre for Ocean
Information Services (INCOIS) and BMD operated JMA's MRl model for
storm surge modeling were used as regional inputs.
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As mentioned earlier, forecast parameters can differ by location and
by the specifics of each cyclone. Assigning weights to different
hazard parameters (wind, rain, surge) is done on a per-cyclone basis,
guided by expert knowledge of what the dominant threats are for that
storm. For example, one cyclone might be particularly wet (huge
rainfall but moderate winds), while another is a wind-heavy cyclone
with less rain. Factors like the cyclone’s track, its landfall timing
(high tide vs low tide), the season, and the local geography all
influence which hazard component will have the greatest impact.
Therefore, our toolkit does not use a fixed rule for weighting wind vs.
rain vs. surge; instead, it allows forecasters to adjust weights based
on their expert judgment for the scenario at hand.

To illustrate, in the case of Cyclone “Remal” (the case study in this
toolkit' ), forecasters determined that wind and rainfall posed roughly
equal threat levels, while storm surge, though significant, was slightly
less of a threat compared to the other two. Accordingly, they
assigned weights to the hazard components as follows: wind gust =
0.35, rainfall = 0.35, storm surge = 0.30. The Toolkit first normalized
each parameter’s forecast values (ensuring, for example, that we
consider relative wind speeds on a 0—1 scale, etc.), then applied
these weights. The result was a single combined hazard score for
each location — effectively an index representing the forecasted
hazard severity for that area.

Forecast Hazard = (W1x Wind gust + W2 x Rainfall + W3 x Storm surge)
Where,

W1 is the weight for wind gust

W2 is the weight for rainfall

W3 is the weight for storm surge (refer to case study for details)

This weighted sum gave a forecast hazard score for each area, which
was later used in the impact computation. In essence, these steps
help condense multiple hazard dimensions into one measure,

" The details of this case study have been discussed later in this document
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reflecting the expected overall hazard intensity. An area with
extremely high wind and rain (even if storm surge is low) might get a
very high hazard score, and vice versa.

By considering all relevant hazard aspects, it lowers the chance of
overlooking a potential threat. For instance, a community behind a
strong embankment might be safe from storm surge but still at risk
from wind damage - the combined hazard score will still account for
wind in that case. This approach also mirrors how forecasters think in
practice, weighing different facets of a storm’s behavior. It is an
example of the toolkit's flexibility to accommodate expert input and
adjust to the unique characteristics of each cyclone.

4.3 Exposure

The third component in impact forecasting is exposure, identifying who
and what is in harm’s way during the cyclone, and to what degree. It is
essential to extract the relevant exposure indicators for the time and
area of the disaster because even a severe hazard causes no impact if
nothing is exposed to it. Exposure indicators can include any
individuals, communities, infrastructure, or economic assets that could
be affected by the cyclone. These indicators may be
non-sector-specific (general exposure of the area) or sector-specific
(focused on a particular sector like agriculture, health, etc.). A
two-pronged approach to exposure was conducted for this toolkit: a
general exposure analysis and a sector-specific analysis (focusing on
agriculture).

General Exposure (Quasi-Static Data): Broad indicators that were
available for all locations were inputted. Specifically, population data
and road density were considered for overall exposure indicators. Here
data were partly obtained from the INFORM subnational risk dataset for
Bangladesh and other national sources. Population gives a sense of
how many people are exposed, while road density serves as a proxy for
how much infrastructure (and connectivity) is present and potentially at
risk. Due to difficulties in obtaining very detailed local exposure data
for every sector, the analysis limited the exposure assessment to these
two indicators for the generic impact maps that are not sector-specific.
In practice, population and infrastructure distribution can highlight
areas that would face greater disruption or evacuation needs.

Sector-Specific Exposure (Agriculture): To enhance the analysis, the
toolkit developed an exposure integration framework for the
agricultural sector, recognizing that agriculture is a vital part of
livelihoods in the coastal regions and highly vulnerable to cyclone
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impacts. Here, in addition to road density (which is also relevant for
agriculture, for transporting goods, accessing markets, etc.),
vegetation health indicators as proxies for agricultural assets were
included. In particular, it used two remote-sensing based indices:
Fraction of Absorbed Photosynthetically Active Radiation (fAPAR)
and Vegetation Condition Index (VCI). These indicators reflect crop
and vegetation status, which in turn indicate the exposure of the
agricultural sector - lush, extensive croplands mean a lot is at
stake if a cyclone hits during the growing season. Both VCI and
fAPAR data were sourced from the European Copernicus Sentinel-2
satellite imagery.

After computing the VCI and fAPAR, the data were exported to a CSV
file and visualized in GEE for incorporation into the analysis and
record-keeping. Using this satellite-based approach, the areas with the
highest agricultural exposure before the cyclone were effectively
mapped. If a specific upazila had a significantly high proportion of
healthy crops (high VCI/fAPAR), it indicated that the cyclone could
cause substantial crop damage in that area, categorizing the upazila as
highly exposed in agricultural terms.

Finally, similar to the hazard components, a composite exposure score
was created for each area. The exposure indicators were combined
using appropriate weights: for the general overall exposure, Population
and Road Density were weighted equally at 0.5 each; for
agriculture-specific exposure, the weights applied were 0.35 for VCI,
0.30 for fAPAR, and 0.35 for Road Density. These weights were
determined based on expert judgment, which suggested that road
infrastructure and vegetation indicators are of roughly equal importance
in capturing the agricultural impact scenario. The general formula for
composite exposure follows the same structure as that for hazard.

Exposure = (W1 x Exposure 1 + W2 x Exposure 2 + Wn x Exposure n)
Where,

W1 is the weight for the 1st Exposed indicator

W2 is the weight for the 2nd Exposed indicator

Whn is the weight for nth Exposed indicator (refer to case study for details)
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4.4 Impact Computation

With the vulnerability score, forecasted hazard value, and exposure
value available for each area, the impact score can now be computed.
Conceptually, as previously mentioned, impact is a function of all three
components. In this toolkit, an approach was implemented where the
impact score is proportional to the product of hazard, exposure, and
vulnerability data. For each upazila/union:

) The normalized hazard score (from step 4.2) for that location was inputted.
) The composite exposure score (from step 4.3) for that location was inputted.
([ The vulnerability score (from step 4.1) for that location was inputted.

3 3
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Here, Iy is Impact Score of a selected area
Vs is Vulnerability Score for a selected site
H; are the selected hazard forecast indicator values of a selected area
E; are the selected Exposure indicator values of a selected area
W, = Weightage of respective hazard indicator
W,;= Weightage of respective exposure indicator

After computing a raw impact score for each area, normalization and categorization
were performed similarly to to the process used for vulnerability. The raw impact
scores (which might be, say, on a 0 to X scale) were normalized to a 0—1 range and
then divided into three distinct classes for easier communication: Low impact, Mod-
erate impact, and High impact. In the classification scheme, Low Impact, Moderate
Impact, and High Impact. In the classification scheme, scores above 0.7 were cate-
gorized as High Impact, scores between 0.3 and 0.7 as Moderate Impact, and scores
below or equal to 0.3 as Low Impact. These thresholds were set based on the distri-
bution of scores and aligned with known outcomes, though they can be adjusted for
different contexts.

The categories were then mapped in ArcGIS Pro, using a traffic-light color scheme for
clarity: red for High Impact areas (most severe expected impacts), orange for Moder-
ate Impact, and green for Low Impact. This visual representation makes it easy for
stakeholders to see at a glance which locations should be prioritized for emergency
preparedness and response.

It is worth noting that while this toolkit used three categories here for simplicity, the
underlying impact scores are continuous. Other studies can use a finer scale or

different breakpoints if desired. Also, calibration and validation of these impact
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scores against real outcomes are crucial (and are addressed in the case study and
subsequent sections) to ensure that, for instance, “High impact (red)” truly corre-
sponds to areas where major damage is likely.

The outcome of this process is an Impact Forecast Map, which serves as the primary
output for stakeholders. In Chapter 5 (the case study), an example of such a map for
Cyclone “Remal” is presented, along with guidance on how to interpret and act upon
the map'’s information.

0 Bangladesh

As the frequency of natural hazards increases, the need for
accurate, timely, and relevant weather forecasts becomes ever more
critical. While many meteorological agencies worldwide are refining
their Numerical Weather Prediction (NWP) capabilities, forecasts
often remain disconnected from the socio-economic data needed to
produce robust Impact-based Forecasts (IbF) or Impact Forecasts
(IF). A major challenge lies in accessing and combining these
socio-economic indicators, typically collected by agencies outside
of National Hydrometeorological Services (NHMSs), within a
Decision Support System (DSS) that can integrate them seamlessly
with weather forecast data and disseminate near-real-time impact
forecasts to stakeholders.

To address this gap, the Regional Integrated Multi-Hazard Early
Warning System (RIMES) developed the Integrated Forecast
Dissemination Portal (INSTANT), available at instant.rimes.int. This
semi-automated DSS provides five-day lead-time forecasts for key
meteorological parameters—rainfall, temperature, wind speed, and
humidity—along with real-time alerts for extreme weather events. By
incorporating Impact Forecasting into the platform, INSTANT
delivers timely, data-driven insights that enhance operational
efficiency across sectors such as agriculture, transportation, and
public safety. Drawing on data from the Bangladesh Meteorological
Department and other reputable sources, INSTANT consolidates
current and historical information to bolster resilience efforts.

Further enriching its functionality, INSTANT's Special Bulletin
section offers comprehensive reports on severe weather conditions,
aiding humanitarian responses. Developed collaboratively by RIMES
and various meteorological organizations, these bulletins provide
critical, actionable information to reduce disaster-related losses
and streamline decision-making.
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Case Study:
Impact
Computation
of Cyclone
“Remal”







Background

According to BMD, on May 21, 2024, an upper air cyclonic circulation
developed in the southwest over the Bay of Bengal (BoB). By May 22,
a low-pressure system (L) had formed over the southwest and
westcentral area of the BoB. The conditions worsened, on May 24, it
consolidated into a depression (D) over the central Bay of Bengal. On
May 25, there was movement northwards, and the conditions
intensified, developing into a deep depression (DD). The development
continued and it escalated into a cyclonic storm known as "REMAL"
around the north and adjoining east central area. During May 26, the
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storm intensified into a severe cyclonic storm (SCS) and, with wind
gusts of up to 135 kmph, moved across the shores of West Bengal
and Bangladesh between Sagar Islands and Khepupara, close to
Mongla, during the night of May 26. It turned into a cyclonic storm
(CS) after weakening. The track for the cyclone, “Remal” has been
depicted in Figure 5.

According to BMD, the cyclone struck the Sundarban Delta of West
Bengal and Bangladesh on Sunday, May 26, as a powerful cyclonic
storm. At the time of landfall, the storm's sustained winds ranged from
100 to 135 kilometers per hour in the coastal region. Remal resulted in
the deaths of at least 84 individuals, with 65 casualties reported in
India and 19 in Bangladesh. The
storm surge, along with wind speeds
of up to 111 km/h and severe rainfall,
caused 5-8 feet of flooding in coastal
areas of Bangladesh. By June 2, the
cyclone and ensuing flooding had
caused widespread destruction in 19
districts, affecting nearly 4.6 million
people (UNICEF, 2024; IFRC, 2024). By
May 29, the cyclone had damaged
embankments in a number of coastal
communities, flooding roads and
villages and disrupting access to the
affected areas. On May 28, high
winds damaged power lines, leaving
over 3 million people without
electricity in the impacted districts
(ACAPS, 2024). Power outages
caused by damaged roadways and
electrical infrastructure, as well as
delays in mobile and internet
connections, hampered humanitarian
workers' mobility and response
efforts in the impacted districts
(IFRC, 2024).
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Forecast Scenario during Landfall

In this case study, ECMWF forecast data was used to analyze the
scenario at the time of Cyclone Remal’s landfall, specifically looking at
accumulated rainfall and peak wind gusts in the project area. Figure 6
shows the ECMWF forecast for total rainfall during Remal’'s passage,
and Figure 7 shows the forecasted maximum wind gusts. These
forecast maps help illustrate which areas were expected to get the
worst of Remal’s rain and wind.

Rainfall: According to the forecasts categories, virtually
all upazilas in the study area were expected to receive
heavy to very heavy rain during Remal’s landfall. In BMD’s
meteorological terms, “Heavy” rain generally means 44-88
mm in 24 hours, and “Very Heavy” is >88 mm in 24 hours.
The forecast indicated that the entirety of Satkhira
District, all of Bagerhat District (except Chitalmari
Upazila), all of Barguna, and parts of Patuakhali District
would experience Very Heavy Rain (>88 mm) over the
period of Remal’s passing. Indeed, those areas were in the
higher rainfall band (the southwest part of the storm).
Chitalmari Upazila in Bagerhat, along with some
northeastern upazilas of Patuakhali, were exposed to
slightly lower rainfall but still within44-88 mm range.

Wind: The forecast pinpointed Mongla Upazila (in
Bagerhat District, near the coast and the Sundarbans) as
facing the most extreme winds. Mongla was expected to
see wind gusts exceeding 150 km/h, which makes sense
as the cyclone’'s core passed very near Mongla. Following
Mongla, other upazilas with severe wind exposure
included Sarankhola (Bagerhat), Kaliganj and Shyamnagar
(both in Satkhira) — each forecasted to receive gusts in
the 120-150 km/h range. These upazilas are along or near
the coast and were in the right-front quadrant of the
cyclone where winds are strongest.

These forecast insights fed into our impact model: for example,
Mongla’'s extremely high hazard values (for both wind and rain)
combined with its vulnerability would likely yield a high impact score
there, as the subsequent analysis will show.
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Fig. 6. ECMWF Daily Accumulated Rainfall Forecast during the passage of Cyclone
“Remal” based on 00 UTC 26.05.2024 valid for 00 UTC 27.05.2024.
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Fig. 7. ECMWF Wind Gust Forecast during the passage of Cyclone “Remal” based on
26.05.2024 valid for 26.05.2024.
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Impact Scenario of the Case Study Area

Using the methodology from Chapter 4, impact scores for the
upazilas in the STEP project area (within Satkhira, Bagerhat,
Barguna, and Patuakhali) were computed. These scores were then
classified into Low, Moderate, and High impact categories and
outputted as a map. Figure 8 shows the overall generic impact map
(overall impact), and Figure 9 shows the agriculture sector-specific
impact map, both for the case study area during Cyclone Remal’s
passage.

On the overall impact map (Figure 8), areas categorized as High
Impact (red), Moderate Impact (orange), and Low Impact (green) can
be seen across the region. To produce this map, the analysis
utilized the composite hazard (from wind + rain + surge) and general
exposure (population + roads) together with the vulnerability score.
As described earlier, for each upazila the impact score was
calculated and then grouped into the three levels.

For creating a sector-specific impact map (Figure 9) focusing on
agriculture, we incorporated additional exposure indicators relevant
to the sector — namely fAPAR and VCI - alongside road density.
These were standardized and weighted at 0.35, 0.35, and 0.3
respectively (summing to 1) in conjunction with the same
vulnerability scores, to compute a separate impact score
highlighting agricultural impact potential. Essentially, Figure 8
represents the “overall impact on any sector/assets,” while Figure 9
zeros in on agricultural impacts.

Identifying potentially high-impact areas is extremely useful for
planning anticipatory actions, particularly when resources are
limited and need prioritization. While we cannot stop a cyclone from
forming, early warning and impact forecasting mechanisms allow us
to reduce the impact on communities by acting beforehand. The
impact maps give a data-driven basis for such action.

From Figure 8 (Overall Impact), it can be observed that certain
upazilas were forecasted to be especially hard-hit by Cyclone
Remal’'s combined effects. For example, Shyamnagar (Satkhira),
Satkhira Sadar, Morrelganj (Bagerhat), and Amtali (Barguna) were
highlighted in red as High Impact areas. These locations likely had
the unfortunate mix of high hazard exposure (as seen in the
forecast scenario) and high vulnerability (as per our data), leading
to high impact scores. Shyamnagar and Satkhira Sadar in Satkhira
District are both densely populated and low-lying, and they
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experienced very strong winds and heavy rain; Morrelganj had very
high vulnerability index (as we will see) plus significant hazard
exposure; Amtali in Barguna faced the open coast. Thus, our model
rightly flags them.

This overall impact information is useful as a general guide.
However, impacts can vary by sector. For instance, an upazila might
be severely impacted in terms of agriculture but not in terms of
infrastructure, or vice versa. To address this, Figure 9
(Agriculture-specific Impact) was generated, which offers a more
in-depth sectoral analysis. In Figure 9, the analysis essentially
focused on answering the question, which areas will suffer the most
in terms of crop/agricultural damage?

Comparing the two maps (overall vs agriculture focus) reveals:

[ For Barguna and Patuakhali Districts, both maps show a similar
impact level (both districts were largely orange, Moderate impact,
with some red). This suggests that in those districts, the overall
impact and agricultural impact were in line (likely because
agriculture is a major exposure in those areas and was accounted for
in the overall too).

L For Satkhira and Bagerhat Districts, differences emerge. For example,
the agricultural impact map shows that Bagerhat has more
high-impact areas relative to Satkhira. In contrast, the overall impact
map shows Satkhira as equally or more impacted in general. In fact,
our analysis found that Mongla Upazila (in Bagerhat), which was
labeled as low impact on the general map, is identified as moderately
impacted on the agriculture-specific map. The key reason behind this
difference is because Mongla has the Sundarbans Forest (less human
exposure) but significant vegetation; also, perhaps fewer people but
still significant crop areas. Thus, while overall impacts on
communities in Mongla might be lower (few people in the Sundarbans
core and good sheltering by forests), the agricultural impact — in
terms of ecosystem or any local agriculture — was not as low.
Conversely, some areas that were high impact overall might not be as
critical agriculturally if they are urban centers or have less cropland.

L The agriculture-specific map indicates that Bagerhat District’s
agricultural sector could be generally more affected than Satkhira’s,
which is interesting because the overall impact map might have
suggested Satkhira was harder hit (perhaps due to more populated
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areas). This could be because Bagerhat, especially in upazilas like
Morrelganj and Rampal, has extensive agricultural land (rice paddies,
shrimp farms, etc.) that were exposed, whereas Satkhira’s worst
impacts may have been flooding in populated areas rather than
agricultural loss.

In summary, Figure 8 (overall impact) might guide general disaster
response (where to send relief first, which areas to evacuate, etc.),
while Figure 9 (sector-specific) can guide which sectors need particular
support in which areas (for instance, where to focus interventions for
farmers, such as distribution of emergency animal feed or seeds for
replanting). Both perspectives are valuable and, as shown, they are
complementary. Combining them, one sees that, for example,
Morrelganj was highly impacted in both scenarios, meaning it is a clear
hotspot for all kinds of damage (people and agriculture). Sarankhola
might have experienced moderate overall impact, but its agricultural
impact was high. This suggests that while human impact might have
been relatively lower, significant crop losses occurred, indicating a
need for agricultural recovery aid.
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Fig. 8. Overall Impact Scenario of selected case study areas during the passage of
cyclone, “Remal” based on 26.05.2024 considering ECMWF forecasted Wind Gust,
Storm Surge, and Rainfall; Vulnerability and Exposure (Combined Road Density and
Population) across Satkhira, Bagerhat, Barguna, and Patuakhali Districts.
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Fig. 9. Impact Scenario of selected case study areas during the passage of cyclone,
“Remal” for the Agriculture sector based on 26.05.2024 considering ECMWF
forecasted Wind Gust, Storm Surge, and Rainfall; Vulnerability and Exposure
(Combined Road Density, VCI, and fAPAR) across Satkhira, Bagerhat, Barguna, and
Patuakhali Districts.
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Impact Interpretation

The results of the impact assessment are categorized into low,
moderate, and high impact zones. It is important to interpret these
categories correctly. The categorization simplifies a complex reality,
and while it is very useful for communication and decision-making,
one must remember that it's relative and based on our standardized
scoring. It is challenging to capture every nuance of a dynamic
disaster scenario in a simple numeric scale, but the categories aim
to describe the most likely impact severity in a comparative sense.

An area categorized as “Low Impact” does not mean it is completely
safe or that it will experience zero damage. It means that, relative to
other areas, its overall impact is expected to be low. There might still
be some damage or losses, but at a lower level. Perhaps only a few
homes are damaged or only minor flooding occurs, etc. Some
particularly vulnerable individuals in a “low impact” area could still
suffer (for example, an isolated vulnerable household), even if on
average the community fared well. Thus, low impact is a comparative
term, not an absolute guarantee of safety.

Similarly, “Moderate Impact” indicates a level of impact higher than
low-impact areas but lower than the worst-hit areas. Such a scenario
might expect notable damage: more houses destroyed (though not as
extensively as in high impact zones), services might be disrupted to
some extent (maybe power outages for a day, some roads
impassable), and financial losses are moderate in scale. It's a
mid-range scenario — significant, but not catastrophic if proper
response measures are in place.

“High Impact” areas are those likely to experience the most severe
consequences. One can expect extensive damage to homes
(including many houses severely damaged or destroyed), major
disruptions to civil services (power, water, communications could be
knocked out for a long period), significant economic losses, and
possibly long-term recovery needs. Essentially, these are the
communities that might be devastated and would require the most
external aid and time to recover.

To formalize these interpretations based on the findings, the
categories can be simplified as follows:
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Medium
Impact

Minor damage and Noticeable = damage and
disruptions. There may be disruptions. Anumber of houses
a few damaged houses suffer damage (more than in low

(generally of  lesser
construction quality), little
to no interruption of public
services (e.g., roads
mostly passable, power
largely on), and relatively
low economic losses. The
community can cope mostly
with local resources.

impact areas, but not a majority
as in high impact), public
services experience moderate
interruptions  (power outages
and road blockages that are
resolved in days), and moderate
financial loss occurs. Extemal
assistance might be needed, but
the situation is manageable.

These interpretations align with how the toolkit categorized the
numerical scores. For instance, recall previously how >0.7 was set as
high impact. In our case study, that might correspond to something
like: those areas had, say, >70% of assets at risk or similar, hence
widespread losses. A low impact score (<=0.3) would correspond to
scenarios where perhaps <=30% of assets might be affected. Again,
these are relative cutoffs. Understanding these categories is crucial
for action. Disaster managers looking at the map should know red
zones (high) need urgent help and possibly full-scale emergency
response; orange zones (moderate) need response too but perhaps
not as much or they have more capacity to help themselves; green
zones (low) should be monitored but can largely handle the situation
with minimal assistance, barring any outliers.
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Validation of the Impact Scenario at Different Level

Before developing the highly localized approach in this toolkit, RIMES
initially produced cyclone impact scenarios at the district level (the
administrative level above upazilas). In that approach, each of
Bangladesh’'s 64 districts received an impact score using broader data
(Figure 10). We carried that forward here for validation purposes. The
district-level impact calculations used district-aggregated indicators:
vulnerability and coping capacity data from INFORM, along with hazard
inputs (rainfall, wind) from ECMWF and storm surge from BMD for
Cyclone Remal. The methodology was essentially the same as
described but applied at a coarser spatial resolution (districts instead
of upazilas/unions).

The result was a normalized impact score for all districts on a 0 to 1
scale, where 0 would mean no impact and 1 the highest impact
observed. These scores revealed a clear pattern: districts along or near
the Bay of Bengal showed the greatest impact during Cyclone Remal,
while inland districts had much lower scores (as expected, since the
cyclone dissipated quickly after landfall). Notably, Bagerhat District
emerged with one of the highest impact scores (essentially 1.0, as we
normalized the maximum to 1), indicating it was the hardest hit in our
model — which aligns with the fact that Remal’s core passed through
Bagerhat (Mongla, Sarankhola) and that Bagerhat has significant
vulnerabilities (many low-lying areas, etc.).
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Fig. 10. Potential District-level Impact Map during the passage of cyclone “Remal”
highlighting the variation in Impact Forecasted in Bangladesh based on 25.05.2024
valid for 27.05.2024. The indicators considered include forecasted wind gust, storm
surge, and rainfall alongside vulnerability and lack of coping capacity across districts.
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To validate these district-level impact scores, we compared them with
actual damage and loss data reported by the Department of Disaster
Management (DDM) for the event. Specifically, we looked at metrics
like the monetary value of losses and the number of houses damaged
in each district, which were compiled in the aftermath (for example,
DDM might report X million USD of damage in District A, Y houses
destroyed, etc.). It was then checked whether higher impact score
districts indeed had higher reported losses.

The analysis showed a strong positive correlation between our
forecasted impact scores and the actual damage outcomes (Figure 11).
For insta:ice:

Bhola District had a normalized impact score of
0.37 according to the model. Data from the
Disaster Management Division (DDM) indicated
that Bhola incurred approximately USD 79
million in damage. When this loss figure is
normalized relative to other districts, it also
equates to around 0.37. This one-to-one
alignment in Bhola’s case suggests our impact
score (which predicted a moderate impact) was
spot on in terms of real consequences.

Bagerhat District, which had the maximum
impact score of 1.0 (the worst case), recorded
the highest levels of destruction. For example,

around 63,924 houses were damaged in
Bagerhat the largest number among the affected
districts. When normalized (taking Bagerhat's
count as 1.0), this matches the impact score
ranking. In other words, Bagerhat being at the
top in both forecast and reality further supports
the reliability of the model.

Overall, statistically, the methodology found a significant positive
correlation: as the forecasted impact score for a district increased, so
did the actual losses report. This gives confidence that the
methodology is capturing the key factors that determine the Cyclone’s
severity. It also suggests that if used operationally, the impact
forecasts could serve as a reasonable proxy for where damages will be
high, even before reports come in crucial for directing emergency
resources immediately.
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Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting

56



Impact Validation for the Study Area

While the district-level validation is encouraging, the aim of the
toolkit is also to provide location-specific forecasts at sub-district
(upazila/union) level. Validating at these finer levels is more
challenging due to data limitations. The toolkit included both
sector-specific and overall exposure data, plus granular vulnerability
and hazard forecasts, to compute the impact for each upazila and
some unions. The district analysis provides confidence that the
general methodology is robust, as it proved to be “on the right track”
when aggregated. The assumption is that adding more local data (as
this methodology did) should only improve the accuracy. However,
to rigorously validate sub-district results, this methodology ideally
needs observed impact data at that same sub-district level.

A key challenge faced was the limited availability of reference data
at the upazila or union level. DDM and other agencies often report
damages aggregated by district (and sometimes by broad region).
Detailed, geo-referenced loss data (for example, exactly how many
houses in each union/Upazila were damaged) are not always
systematically collected or published. This is a common challenge
in disaster analysis — the more local you go, the harder it is to get
comprehensive data.

In the absence of full upazila-level damage datasets for all metrics,
the methodology took two approaches for validation within the STEP
project area:

J Aggregated Upazila-to-District Comparison: The results were
upscaled from upazila to district level to compare with known district
outcomes, as outlined in the previous section. This was achieved by
analyzing the number of upazilas within each category (low,
moderate, high) for each district to infer an overall district impact,
and then comparing that with district losses. For example, in Satkhira
District, six of the seven upazilas studied were categorized as low
impact, and one as high impact. This allowed for the inference that
Satkhira’s overall impact leaned low, with one trouble spot, which
was consistent with DDM data showing that Satkhira had the lowest
monetary damage (~USD 0.46 million). In Bagerhat District, many
upazilas showed moderate to high impact. A “weighted score” was
computed, assigning 2 points for each high-impact upazila and 1
point for each moderate (illustrative scoring). Bagerhat scored higher
by this measure, aligning with its significantly larger damages (~USD
6.65 million). Barguna had mostly moderate impact upazilas, with
one high impact, which slightly increased its score. Barguna’'s losses
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(~USD 3.73 million) were slightly higher than Patuakhali (~USD 3.70
million), which had no high impact upazilas, only moderate. This
qualitative aggregation exercise indicated that the upazila-level
forecasts, when aggregated to the district level, closely mirrored the
actual district impact patterns.

The results of the cluster statistical analysis of the relevant dataset

Bagerhat Barguna
Total Monetary Loss (USD) Total Monetary Loss (USD)

6,504,198.77 3,647,781.65

Upazila Impact Count Upazila Impact Count
4 High, 5 Moderate 1 High, 5 Moderate

Weighted Score Mode Weighted Score Mode

22 Moderate 13 Moderate

Average Average
2.444 2.167

EEVVELGEL Satkhira

Total Monetary Loss (USD) Total Monetary Loss (USD)
3,616,456.42 4,49,542.97

Upazila Impact Count Upazila Impact Count
5 Moderate, 3 Low 1 Moderate, 6 Low

Weighted Score Mode Weighted Score Mode

13 Moderate 8 Low

Average Average
1.625 1.143

() Sector-Specific (Agriculture) Validation: Some data on agricultural
losses, such as crop area affected or yield reductions, was available
from remote sensing data. These agricultural-focused impact scores
were compared with the total agricultural losses reported by DDM for
the cyclone. The inclusion of detailed local exposure data, such as
VCI and fAPAR, proved to be valuable, as the sector-specific impact
predictions showed a meaningful correlation with actual agricultural
losses. In the case of Remal, statistical analysis showed strong
relationships. For moderate-impact zones (in terms of agriculture),
the Pearson correlation coefficient r was about 0.71, implying that
over 50% of the variance in monetary loss could be explained by our
impact metric. For high-impact agricultural zones, r was around 0.68,
also corresponding to ~50% variance explained. Interestingly, in
low-impact zones, a negative correlation (r ~ -0.79) was observed,
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indicating that some areas classified as low impact still experienced
notable losses. This could be due to local anomalies or limitations in
how thresholds were set. It highlights that the "low" category might
sometimes overlook issues if, for example, an area was generally low
impact but one sector experienced significant damage. Furthermore,
the overall impact correlation with losses was weaker than that of
the sector-specific predictions. This is understandable: without local
exposure data, the model remained more generic and could not
account for, for example, an area with a high concentration of
valuable crops. The incorporation of local data strengthened the
correlation and improved prediction accuracy.
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Fig. 12. Scatterplot showing the correlation between Impact score and crop change,
trend line highlights the overall negative relationship, and black dots representing the
different Upazilas.
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® The relationship between impact scores and observed crop changes
(using satellite-observed vegetation change as a proxy for crop
damage) was further examined. A clear negative correlation was
found: areas with higher impact scores tended to experience a
greater decrease in vegetation (crop) health after the cyclone. The
Pearson correlation coefficient (r) was -0.67, and Spearman’s rank
correlation coefficient (r) was -0.79 for the relationship between
impact score and crop area change, both statistically significant with
p-values on the order of 10-5. An ANOVA test was also conducted,
which revealed significant differences in vegetation loss across the
low, moderate, and high impact categories (F = 5.74, p ~ 0.008).

In plain terms: our categories do correspond to real differences on the
ground high impact areas lost a lot more crop cover than low impact
areas, for example, validating that the impact categories mean
something concrete.

That being said, these validations also highlight the limitations and
areas for improvement:

Data Resolution: The methodology can only be fully validated
where data exists. The discrepancies at “low impact” correlation
likely reflect data gaps or threshold issues. It underscores a need
for better data collection at local levels. Going forward, working
with DDM and others to get detailed union-level damage data
(perhaps through community reporting or drones, etc.) would help
refine and validate the model further.

Category Thresholds: The moderate and high categories
performed well; the low category was somewhat less predictive in
terms of absolute losses. This might mean our threshold of 0.3
for low vs moderate could be tweaked, or that some “low” areas
had one specific problem that caused more loss than expected.
It's also possible that some losses in low-impact zones were due
to freak incidents (e.g., a cyclone hitting a village where polder
were weak and not reported). Adjusting categories or adding a
finer gradation (maybe a “very low” vs “low”) might capture those
nuances. However, adding more categories can also confuse
stakeholders.

Over-simplification: By reducing impact to three classes, the
process inevitably oversimplify some complexities. For example, a
“moderate” impact area might have had mostly low impacts, but
one neighborhood got wiped out; the average is moderate, but that
nuance is lost in categorization. Stakeholders on the ground might
be aware of such anomalies, so it's important we communicate
that impact forecasts are guides, not gospel. This is why local
knowledge should complement model outputs.
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For future improvements, we suggest:

Higher-resolution data: Incorporate more detailed datasets
such as building structural information, infrastructure
network data, socioeconomic data at the village level, etc.,
which could improve model accuracy. Also, near-real-time
exposure data (like current crop prices, or evacuation status
of population) could further refine predictions on the fly.

Dynamic thresholds: Rather than static cut-offs like 0.3 and
0.7, the methodology could explore dynamic threshold
setting based on context or using clustering algorithms to
determine natural groupings in the impact results. Machine
learning could potentially classify impact levels using more
complex patterns in the data.

®i@® Context-specific calibration: Each cyclone has unique

__)(__ features; future study might calibrate the impact model

@FT® differently for a slow-moving rain-heavy cyclone versus a
fast, dry cyclone, etc. Impact categories should remain
flexible and possibly scenario-specific. For instance, “high
impact” in a densely populated district could mean
something different than “high impact” in a sparsely
populated one in absolute terms.

In conclusion, the validation shows that the toolkit's impact
predictions closely mirrored actual outcomes, especially when
looking at larger scales or sector trends, which is promising. At the
hyper-local level, the model performs well overall but will benefit
from ongoing refinement and more data. This iterative process of
applying the model, validating with real events, and then improving it,
will gradually increase its reliability. Nonetheless, even in its current
form, the toolkit provides a credible basis for early action decisions,
as demonstrated by how well it correlated with Cyclone Remal’s
observed impacts.
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Experience from the Ground: Cyclone Remal (2024)

Cyclone-prone coastal regions in
southwestern Bangladesh
regularly experience severe
disruptions to livelihoods,
agriculture, and infrastructure.
Traditionally, disaster response
in these communities has
focused on post-event relief,
which often leaves them
vulnerable to repeat events year
after year. Recognizing the need
for a more proactive approach,
the impact forecasting toolkit
described in this document was
co-developed and applied in the
field to help stakeholders
anticipate and mitigate
cyclone-related damages before
they occur.

By combining local,
sector-specific data with
correlation analyses and detailed
exposure indicators, the toolkit
demonstrates how to produce
reliable impact forecasts that
inform early actions, optimize
resource allocation, and
ultimately enhance community
resilience.

A practical example of this
approach in action is the
“Strengthening Forecast-Based
Early Actions in Cyclone-Prone
Coastal Regions in Bangladesh”
(STEP) project. This
ECHO-supported initiative, in
collaboration with the
Department of Disaster
Management (DDM) and other
partners, operationalized the
insights from impact forecasting
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to protect vulnerable
communities. STEP worked with
local disaster management
committees to establish
evidence-based triggers for
anticipatory interventions. When
forecasts (like those for Cyclone
Remal) indicated high risk,
these triggers activated
predefined actions — essentially
bringing the plans outlined by
the toolkit to life.

Through this integrated,
forecast-driven strategy,
communities were able to
mobilize resources and
safeguard critical assets well in
advance of landfall. For instance,
farmers harvested crops early or
moved them to safe storage,
fishermen secured or moved
boats to sheltered areas,
households reinforced their
homes or evacuated livestock,
and emergency committees
positioned relief goods at
strategic points — all before the
cyclone hit. The case study
below details how Cyclone
Remal’s projected impacts were
addressed on the ground,
highlighting the effectiveness of
timely, data-driven actions in
preserving lives and livelihoods.

With the issued special bulletin
from BMD and technical support
from RIMES, local committees
under STEP took prompt action
based on the forecasts issued
for Cyclone Remal. They
coordinated closely with the
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national agencies: DDM, the
Cyclone Preparedness
Programme (CPP), and local
government units. As early as a
few days before landfall, when
BMD’s forecasts (augmented by
our impact modeling) warned of
Remal’s potential severity, STEP
activated readiness measures
and Anticipatory Action (AA)
triggers. Warnings were
disseminated widely in
communities, alerting people not
just that a cyclone was coming,
but what impacts to expect (e.g.,
which areas might flood, which
crops might be ruined). This
information came from the
impact-based forecasts.
Consequently, volunteers helped
at-risk households tie down their
roofs, farmers in flood-prone
pockets raised their tubewell
platforms and took other
protective steps, and fishing
communities hauled boats inland
beyond surge reach.

After the cyclone, a rapid
assessment was conducted
(between June 27 and July 15,
2024) across four project
districts: Patuakhali, Barguna,
Bagerhat, and Satkhira. The goal
was to evaluate the effectiveness
of these anticipatory
interventions. The findings were
striking and affirmed the value of
acting early:

Early Warning Reach:
A 58% of households in

the project area

reported receiving
cyclone forecasts or warnings
2-3 days before landfall,
compared to only 36% in nearby
areas without the project’s
interventions. This indicates a
much greater penetration of
early warning, likely due to the
project’s communication
efforts. People knew the
cyclone was coming with a
couple of days’ notice, enabling
them to prepare.

Reduced Damage

Incidence: Despite

Cyclone Remal’s force,

only 49% of households
in the project area were
affected by some form of
damage, compared to 92% of
households in the control areas
(areas not covered by the
anticipatory actions). In other
words, early actions nearly
halved the proportion of
families experiencing damage.
This is a powerful testament to
prevention: things like clearing
drainage channels beforehand,
pre-positioning boats for
rescue, and reinforcing houses
clearly paid off.
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Asset Protection (FbF vs
non-FbF): Some
communities received
forecast-based financing
(FbF) support — essentially cash or
materials given in advance to help
them act (like money to buy ropes,
fuel for evacuation, etc.). Those
households were able to save 90%
of their assets on average. But
what's even more interesting is
that even households without
direct FbF support managed to
save 91% of their assets. How?
Likely because they still benefited
from early warnings and guidance
(even if they did not get cash, they
knew to move their belongings to
safety, etc.). This suggests that
while cash helps, dissemination of
impact forecasts and advisory can
empower people to take effective
measures on their own too.

Return on Investment:

The interventions under

the project showed a

remarkable return on
investment of 15:1. This means
for every 1 United States Dollar
(USD) spent on early action,
about 15 USD of losses were
averted. Interestingly,
households outside the project
who heeded the forecasts (for
instance, those who heard the
warnings on the radio and took
action independently) saw a
similar benefit - roughly USD 16
saved per USD 1 spent on their
own actions, essentially
equivalent to the project areas.
This demonstrates that
anticipatory actions are highly
cost-effective. It is far cheaper to
prevent damage than to repair it
afterward.

Looking at specific sectors of losses in the project vs control areas
reinforces the benefit of early action:

@® Agriculture: In study areas, households had average agricultural
losses of around USD 63, whereas in control areas it was around
USD 87. That is about a 28% reduction in crop loss due to early
harvesting or protection measures.

@® Livestock: Project area households faced damage around USD 242
in livestock value on average, versus USD 252 in control. This is a
smaller difference (~4% reduction), suggesting that even outside
project areas people managed to protect livestock fairly well
(perhaps because moving cattle is a standard practice now). Still,
every bit helps.

@® Housing: A dramatic difference was observed for the most
vulnerable housing category, kutcha houses (made of mud/clay
and straw, very flimsy). In project areas, households living in
kutcha houses saved about USD 795 each, whereas in control
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areas they saved only around USD 1.50. This implies that in
control areas, essentially those houses were wiped out (almost
nothing saved), while in project areas substantial value was
preserved likely through actions like strengthening houses or
evacuating belongings. This huge difference underscores how
anticipatory actions (like reinforcing houses with extra struts or
moving valuables out of kutcha houses into a cyclone shelter)
prevented total loss in extremely vulnerable homes.
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Photo: Volunteers disseminating Early Warning Information before Cyclone Remal
(Credit: STEP Consortium).
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These outcomes underscore the value of deploying anticipatory
actions guided by impact forecasts. Even without lavish resources or
direct payouts to everyone, the combination of early interventions
and accurate forecasts helped communities safeguard their assets
and livelihoods. This is a real-world validation that forecast-based
early action can significantly reduce cyclone impacts. It's worth
noting that the STEP project was a concentrated effort, scaling this
approach nationwide would require institutionalizing such localized
impact forecast and early action protocols. However, the success
stories from Remal, families who did not lose their main source of
income (be it a boat, a cow, or a field of crops) because they acted
early, spread a powerful message. It creates buy-in at the community
level for future forecasts and early actions, thereby creating a
virtuous cycle of trust and responsiveness.

In conclusion, Cyclone Remal (2024) provided a proof of concept for
the application of impact-based forecasting in anticipatory action in
coastal Bangladesh. The toolkit's information was applied on the
ground through STEP, and it translated into tangible reduction in
harm. This example can be used to advocate for further adoption of
such toolkits and the scaling up of forecast-based financing and
action programs. The experience from the ground demonstrated that
timely, well-communicated forecasts empower communities: they
shift from passively awaiting disaster to actively preparing for it.
Forecasts, when combined with local knowledge and resources,
become a tool not just for warning, but for doing — enabling people
to take charge of their own safety and resilience.

Photo: Wind Gust from
Cyclone Remal tore off

the tin roof, leaving the

house damaged
(Credit: STEP Consortium).
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Challenges and Way Forward

Implementing an effective and accurate impact-based forecasting is
not without challenges. Reflecting on our toolkit's development and
application, several limitations and areas for improvement have
been identified:
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Data Availability and Granularity: One of the foremost challenges is
accessing localized, union-level data, especially for hazard forecasts and
certain vulnerability indicators. This toolkit attempted to use very
granular data, but in many regions such detailed data either do not exist
or are hard to obtain in real time. For example, while we might get
union-level population or perhaps poverty data from the census, getting
union-level projected storm surge values or union-level health capacity
data is tough. The finer the granularity, the more data gaps and anomalies
was encountered. In some cases we had to make do with upazila-level
proxies or even district-level data for certain indicators in union
calculations. Moving forward, investing in ground data collection and
incorporating community-sourced data could help fill these gaps.
Additionally, improving data sharing mechanisms among agencies can
help — often data exists but is siloed.

Real-Time Exposure Data: The exposure assessment would be stronger if
the methodology had more up-to-date exposure information. For instance,
knowing how many people are currently in harm’s way (perhaps via mobile
data or evacuation reports), or current asset locations, would refine
impact forecasts. However, such real-time data are limited, particularly
for sector-specific details (like which health facilities are operational,
where livestock are kept at that moment, etc.). In the case of livestock,
for example, the analysis assumed livestock are at the household
location, but in reality, some might have been moved - if this information
was available, exposure dataset could be adjusted. Incorporating
technology like 10T sensors or crowdsourcing (e.g., getting farmers to
report in an app if they moved animals) could one day feed into the
system.

Remote Sensing Constraints: While remote sensing was leveraged (e.g.,
Sentinel-2 for vegetation), there are limitations in data resolution and
coverage. High-resolution satellites (that could see small features like
individual homes or embankment cracks) might not pass frequently or
may be costly. Also, heavy cloud cover after a cyclone can obscure
imagery when we need it most (to assess impacts or get final readings
for analysis). This was partly mitigated by using advanced filtering and
GEE computations, but in some cases data was indeed scant right after
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the cyclone (due to clouds). The toolkit resorted to using pre-event
imagery for baseline and then the first clear post-event images for
validation, but missing the immediate aftermath snapshot is a challenge.
In the future, combining satellite data with UAV (drone) imagery for local
validation could help, or using radar satellites (which penetrate clouds)
for flood mapping.

Categorization and Thresholds: The toolkit currently categorizes impact
into three levels based on set thresholds (e.g. <0.3, 0.3-0.7, >0.7 in our
normalized scale for cyclone Remal). These thresholds were chosen
somewhat arbitrarily and then justified by correlation, but as mentioned,
they might not capture all nuances. Using broad categories simplifies
communication but can oversimplify data. For example, an upazila with
an impact score of 0.29 vs one with 0.31 are nearly the same in reality,
but one gets labeled low and the other moderate, which might affect
response prioritization. This could lead to overlooking some areas that
are borderline. Also, fixed thresholds may not apply equally to all
contexts — a score of 0.5 in a very urban district might mean widespread
moderate damage, whereas 0.5 in a rural district might mean fewer
people affected but a large area of crops destroyed. Access to more
detailed damage data (e.g., actual losses at upazila/union level) from
past events will help refine these thresholds to be more empirically
grounded. This can calibrate the category cut-offs so that, say, “high
impact” truly corresponds to above a certain monetary loss or casualty
rate observed historically.

Validity of “Low Impact” classification: The validation computations
showed that the model struggled a bit with the low impact category
(some low-impact classified areas had unusual losses). This difference is
likely due to comparing different scales of data (district losses vs upazila
impacts) or perhaps that a few low-impact outliers skewed things. It is
noted that similar issues have been observed in other IBF efforts
(Purnama et al., 2023), where low-impact forecasts did not always align
with outcomes. This indicates that the methodology should improve the
accuracy of the “low” end of the spectrum. Possibly, low-impact areas
might still suffer specific sectoral hits (like maybe one village had a
breach in polder recently, which did not included in the vulnerability
information yet). One solution is to integrate some probabilistic thinking
e.g., even low-impact areas have a small chance of severe outcomes.
Communicating that uncertainty is key so that “low impact” doesn’t breed
complacency. Another approach is doing more localized validation for low
categories: maybe use household-level survey data to see if low-impact
upazilas still had pockets of problems. If patterns are identified, such as
a recurring factor that was not included in the model, adjustments can be
made to incorporate this factor and improve the model's accuracy.
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In light of these challenges, several way forward actions can be
recommended:

Improve Forecasting Tools:
Continue improving the hazard
models for local scales. For

Enhance Data Integration: Work instance, downscale storm surge
W|th national databases (I|ke the models to union |eve|s Where
upcoming digital census data, or possible with inundation

an integrated disaster data scenarios and incorporate
platform) to ingest more local high-resolution weather models
detail. Strengthen partnerships (like BMD’s WRF model outputs).
with institutions (like universities The better the hazard detail, the
or local governments) to get more pinpoint the impact can be.

socio-economic data at finer
scales. Perhaps develop
community-based data collection
for vulnerability indicators where
official data are missing (e.g., a
community volunteer network that
reports the status of local
infrastructure annually).

Refine Impact Model with Machine Learning: The

methodology may incorporate machine learning
approaches to handle complex interactions of factors
and to adjust impact categorization dynamically. For
example, a machine learning model could be trained
on past cyclone impact data to predict categories
directly, possibly capturing nonlinear effects or
combinations of indicators that our linear model
might miss.

71 Impact Forecasting Toolkit: Paving the Way Towards Impact Forecasting



Dynamic/Adaptive Classification:
Instead of fixed thresholds, the
system could determine thresholds
on the fly based on clustering of
impact scores or using impact
predictions in absolute terms (like
expected $$ losses). Alternatively,
inclusion of more granular rating
(like a 5-point scale akin to how
hurricanes are rated) if that conveys
nuance better, though that might
complicate user interpretation.

Local Verification & Feedback
Loops: After each event, collect
as much local feedback as
possible: Did the analysis miss
any major impact area? Did it
over-warn someplace that ended
up fine? Such feedback from field
personnel will help tweak the
model. Essentially, treat each
disaster as a live test of the
system, then refine.

not only technical - they are also about ensuring

end-users know how to use this information.

Continuous training for local officials on
interpreting impact forecasts, and drills on

anticipatory action based on them, will maximize

the benefits even as we work on perfecting the

system.
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In conclusion, while the appraoch has proven effective, continuous
improvement is needed to handle its current limitations. By
addressing data gaps, refining methodologies, and incorporating
more advanced techniques, we can enhance both the accuracy and
the trust in impact forecasts. Importantly, securing access to detailed
validation data at local levels (union/upazila damage reports, perhaps
through DDM'’s future systems) is crucial for fine-tuning the model.
This will allow us to quantify precisely how much better the localized
approach performs and where it needs adjustment.

The ultimate goal is to integrate this impact forecasting model
seamlessly into the national early warning system, making it a routine
part of forecasting and response planning. With improvements, it can
become a robust tool that dynamically guides decisions — for
example, automatically triggering early action protocols when certain
impact thresholds are forecast. As climate change likely increases
the intensity of cyclones, having a fine-tuned impact forecasting and
anticipatory action framework will be invaluable for Bangladesh and
other cyclone-prone regions. The challenges we face are
surmountable with collaborative effort, and the way forward is clear:
better data, better models, and better integration lead to better
outcomes for communities at risk.
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ANNEXES

The vulnerability scenario was assessed based on two dimensions:
limited coping capacity and vulnerability dataset. This dataset was
subsequently divided into categories, components, sub-components, and,

ultimately, specific indicators.

Table 1

Cyclone Vulnerability Indicators

Component Sub-Component
Poor People Poor People 45
Extremely Poor Extremely Poor People 5
People
Poverty and Population dependent on 4
Development | Poverty - . Agriculture
o _ Ln;ust?mable Number of Day Laborers (Non- 3
Livelihood . , :
Household ag_ncu_ltural EHd. :u:r_r_ﬂ .
Population involved in Fisheries 4.5
Z Animal Husbandry 3
E Women Headed Female headed Households 25
= Households B _ _
“ House Structure Non-Permanent Housing 5
= Other Oth Structure
- Vulnerable v uﬁerabilih’ Elderly Population Dependent Population 35
Group - Population (age
=15)
Population with Population with Disability 45
Disability
Social- Economical L3
Economics Dependency Unemplovment Rate Unemployment Rate
Vulnerability -
Natural Epidemic Population {age <5) Children under 5 years 35
Adult Literacy Rate Lack of Literacv Rate 2
Lack of Female Literacy Rate 2
C S Internet Users Individuals without access to 335
ommunication
. Internet
£ Mobile Phone Users Individuals without Mobile 4
- Phone
= Cvclone Shelter Number of Cyclone Shelters 5
5 Infrastructure | DRR ) (cxmeuﬂv%peraﬂona.l]
- Access to health Community Clinic Number of community 3
= care and Health Center clinics'health centers (currently
a Density operational)
e Access to water Fresh Water Lack of Fresh water access 4
Embankment Current condition of dam (non- 4
é Embankment Condition fragile, fragile, absent)
ol CFP volunteer Number of Cyclone 5
. Preparedness Programme (CPP)
Institutional | 1 Pareoness Voluteer
*P Early Warning Dizaster Prone HH Received 35
Early Warning
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Data Normalization

The dataset for vulnerable indicators was used to calculate
hazard-specific vulnerability assessment. Indicator values measured on
different scales and units were converted to unitless values on a common
scale through normalization (Sarkar et al., 2024). Normalized values
ranged between 0 and 5, and based on the categorized criteria range, the
study depicted different states of vulnerability. To evaluate the criteria
range comprehensively, the study employed the following formula for all
indicators:

Xmax—Xmin
Xp=
Xn

where, X, is the class interval
Xmax is the maximum value of that indicator for all locations;
Xmin is the minimum value of that indicator for all locations;
X_is the total number of classifications

The obtained class interval was used to classify the indicator into five
different range. The classification was made based on equal intervals.
The categorized range was then used to assign thresholds to the
selected indicators in excel to normalize the data for all upazila and
union (Sarkar, 2024).

Weightage

The weight given to a particular component, category, or indicator alters
based on the situation. The weight of an indicator will vary depending on the
hazard, location, and time, as hazards are dynamic. As a result, the
significance of specific indicators outweighs others, and their
corresponding importance should be reflected in their weight. Through
expert consultation (a type of multi-criteria analysis), the values were
assessed on a scale ranging from 1 to 5, with 1 being least vulnerable and 5
being most (refer to Table 1). The reflected weights can vary as it is an
assumption and not static. The score will be different from time to time
depending on the situation and can change based on future data and event.
The following steps show how to calculate a Vulnerability score from these
respected values.
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Computing Vulnerability Score

Step 1 WNi=3%" Wi=li

Here, WNi= Indicator value
li= Normalized value of any indicator
Wi= Weightage of respective indicator

Multiply the assigned weight with that of the normalized value of the
indicator. Let us assign this value as "'WNi'.

Step 2 Repeat this step for all the indicator values for the selected sites
Step 3 Calculating Vulnerability Score

__ Sum(WNi)
F S —

Sum (W)

Here, V_is Vulnerability Score for a selected site
W is the weight of the selected indicator
WNi is calculated score of Indicator value

In a similar manner, all vulnerability scores were calculated for each of the
selected upazilas and unions. The vulnerability scores were then used to
calculate the Vulnerability Index and thereby form the Vulnerability Map.

Vulnerability Index

The Vulnerability Index has been calculated using ArcGIS PRO. To assess
the cumulative vulnerability index for all case study districts (Bagerhat,
Satkhira, Barguna, and Patuakhali), the vulnerability score for all the
upazilas was needed (Figure 13). For further explanation, let us examine
Bagerhat District (Table 2). The obtained vulnerability score was divided
into five groups (very low, low, moderate, high and very high). The
calculated Vulnerability Index was assigned a color based on the
corresponding index; Very Low = Dark Green, Low = Green, Moderate =
Light Green, High = Orange, and Very High = Red.
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Table 2

Vulnerability Score and Index for Bagerhat District

District Upazila Vulnerability score Vulnerability Index

Sarankhola Upazila 2.667

Rampal Upazila 3.149

E Morrelganj Upazila 3.435

-‘é’ Mongla Upazila 2.665
= Chitalmari Upazila 2.919 Moderate

f‘; Bagerhat Sadar Upazila 2.627

‘%D Mollahat Upazila 3.186

Kochua Upazila 2.522

Fakirhat Upazila 2.863

In order to generate a vulnerability map for Bagerhat District, the
vulnerability scores for all upazilas under that particular district was
needed. The results revealed that Morrelganj Upazila fell into very
high vulnerability zones, Rampal Upazila and Mollahat Upazila in high
vulnerability zone, while, Chitalmari Upazila was classified in
Moderate (Figure 14). On the other hand, Fakirhat Upazila was at low
risk of vulnerability while Sarankhola Upazila, Mongla Upazila,
Bagerhat Sadar Upazila, and Kochua Upazila were the least
vulnerable. In the same manner the vulnerability index for all the
unions under Bagerhat District was also assessed (Figure 15).
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Fig. 13. The vulnerability map has been graphically generated depicting the
vulnerability index of all Upazilas in Satkhira, Bagerhat, Barguna, and Patuakhali
District. For comparison, the vulnerability index has been classified into very low
(dark green), low (green), moderate (light green), high (orange), and very high
(red) for all districts cumulatively.
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Fig. 14. The vulnerability map has been graphically generated depicting the
vulnerability index of all upazilas in Bagerhat District. For comparison, the
vulnerability index has been classified into very low (dark green), low (green),
moderate (light green), high (orange), and very high (red).
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Fig. 15. The vulnerability map has been graphically generated depicting the

vulnerability index of for all the Unions in Sarankhola Upazila, Bagerhat District.
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